
 REACT
The Marmite Framework

What is React?

• A library for building user interfaces

• Strictly concerns itself with the view

• Does not require a browser

• You need to bring your own pattern for
managing data

Key Concepts

• One way binding

• Component based

• Virtual DOM

How does it work?

React

Root Component

A B C

D E

Model

F G

Rendered View

Getting Started

• This used to be tough but its recently been
made easy:

npm install -g create-react-app  
create-react-app hello-world

• Quick look at the output

ES6

• Many of these examples will include ES6

• Using a mixture of transpiling and polyfills Babel
converts this to ES5 for broad compatibility in
browsers

• We’ll look at just enough to make sense of the
examples

ES6 - Destructuring

• Uses to extract data from arrays or objects into
distinct variables

var o = { x: 10, y: 20 }  
var {x, y } = o 
var {x: a } 
console.log(x) // 10 
console.log(y) // 20 
console.log(a) // 10

ES6 - Class
• Classes in ES6 are just syntactic improvements over the

existing prototype based inheritance

class Animal { } 
 
class Dog extends Animal { 
 constructor(name, age) { 
 this.name = name 
 this.age = age 
 } 
} 
 
var myDog = new Dog(‘Tess’, 5)

ES6 - Modules

• Take elements of CommonJS (Node) modules
and AMD (RequireJS) modules

export const myVariable = 5 
export function dosomething() { … } 
export default class MyClass { … }

Simple ToDo List Example

https://jsfiddle.net/jrandall/f7wn69ma/

https://jsfiddle.net/jrandall/f7wn69ma/

Components

• A React application is constructed of a hierarchy
of components

• Components often contain rendering code but
don’t have to (and we’ll see some examples
later)

Virtual DOM
• React uses the component model, properties

and state to build a virtual DOM

• The virtual DOM is much faster to manipulate
than the real DOM

• As components change (via properties or state)
React updates its virtual DOM and uses this to
calculate the most optimal way to update the
real DOM

JSX

• JSX is not HTML

• It’s a shortcut for building the virtual DOM using
Reacts DOM API

• It transpiles to JavaScript (usually via Babel)

• It can provoke interesting reactions!!

Philosophical thoughts on
JSX

• It just flips traditional templating on its head

• Rather than learn a templating DSL with “code”
inside HTML JSX takes the other view - keep
things in JavaScript

• Over time I’ve found myself scratching my head
less over the JSX approach than I have over
Angular 1’s template language

State and Properties
• Properties (props) are immutable and used to share state

between components

• Data and callbacks are passed down

• Components use the callbacks to communicate
change back up the component tree

• State is mutable and scoped within a component

• You should strive to make your components stateless and
either compute the “state” from properties in render() or
use the container pattern to pre-shape the properties

Component Lifecycle
componentWillMount() 
componentDidMount()Mount

Update

componentWillReceiveProps() 
shouldComponentUpdate()  
componentWillUpdate() 
render()

Unmount componentWillUnmount()

State
Changes

Immutability and JavaScript
• JavaScript itself has no inbuilt support for immutable

data

• You can use the Immutable library to add support

• http://facebook.github.io/immutable-js/

• Implements immutable versions of many common
data structures

• Works well with ES6 and TypeScript, transpiles to
ES3

http://facebook.github.io/immutable-js/

Moving on from ToDo

• The ToDo example was simple but we’re quickly
going to hit problems with those patterns:

• Data / state management was complex

• Everything was in one file

• It’s not clear how to test it

Redux

Redux
• It bills itself as a predictable state container for

JavaScript applications

• It’s a simplified implementation of the Flux
pattern

• It’s not tightly coupled to React and you can use
it with other frameworks (Angular 2 for example)

• It does however work very well with React

How does it work?

React

Provider

A B C

D E

Store

F G

Rendered View

Reducer

Dispatch Action
on event

Read Existing State

Set New State

Action

The 3 Redux Principles

• It’s a single source of truth for your whole
application

• State is read only

• Changes are made with pure functions called
reducers

Redux ToDo List Example

https://github.com/reactjs/redux/tree/master/examples/todos

Store

• The store holds the state for the application

• Allows state to be retrieved through getState()

• Facilitates changes to state through the dispatch
of actions

• Allows for listeners to be registered

State in Redux

• Should be thought of as a serializable model

• Don’t form none-hierarchical links between
objects but use references (IDs etc.)

• If you can take state from a service or storage
and place it directly in the store thats a good rule
of thumb

Actions

• Simple payloads of data

• Should contain a type property

• Actions are created by action creators: functions
that return an action. Though with middleware
not always

Reducers
• Reducers are pure functions that take the existing

state and an action and return the new state:  
(existingState,action) => newState

• State is immutable so the reducer must base the
new state on a copy of the existing state (more on
this later) - it cannot change the existing state

• Because deep copying is expensive its common
to reuse objects that haven’t changed in the new
state tree

Container Components

• Container components are used to connect UI
components to the state tree

• Structure data and behaviour to presentation
components

• Leave presentation components to concentrate
purely on presentation and have no
dependencies on the rest of the application

Returning New State

• When dealing with complex models this can get
difficult

• Object.assign is a common option but that can
lead to quite complex code as you balance
copying with reusing existing objects

• There is an add-on package for React that helps
with this

update()

• Get it from npm: 
npm install react-addons-update —save

• Uses a Mongo like syntax for updating state

• Example: ToDo sample reworked to use update

Redux Middleware

• Middleware is run after an action is dispatched
and before it reaches a router

• Within middleware you have access to the
dispatch() and getState() methods of the store

• Can be used to observe to wrap around the
action and reduce process or get involved with it

Tools, Testing and
Building

Tools

• React Developer Tools

• Redux Developer Tools

(and a more complicated example)

Testing
• Using React and Redux leads to a clean

separation of concerns and a structure that
lends itself to testing

• Jest is the Facebook framework for testing React
applications

• Jest mocks dependencies by default. You can
set application wide exclusions and per test
exclusions.

Testing Redux
• Most of your testing will be focussed on reducers

• As they are pure functions they are simple to test

• Construct pre-state

• Execute reducer

• Run expectations against returned state

• Quick example!

Testing React Components

• When testing presentational components you’re
normally interested in verifying that given state x
output y is rendered and doesn’t change

• You could verify this using the virtual DOM

• However Jest includes a “snapshot” feature to
save you a lot of typing

• Example!

Deploy to Azure with VSTS

• VSTS includes everything you need to build and
deploy React apps

• Example!

Thanks
• Contacting me:

• Email: james@accidentalfish.com

• Twitter: @azuretrenches

• GitHub: https://github.com/jamesRandall/

• Blog: http://www.azurefromthetrenches.com

• Slides and sample code will be online in the next few
days

mailto:james@accidentalfish.com
https://github.com/jamesRandall/
http://www.azurefromthetrenches.com

