<> REACT

The Marmite Framework

What Is React?

A library for building user interfaces
Strictly concerns itself with the view
Does not require a browser

You need to bring your own pattern for
managing data

Key Concepts

* One way binding
« Component based

e Virtual DOM

How does it work”?

Getting Starteo

* This used to be tough but its recently been
made easy:

npm install -g create-react-app
create-react-app hello-world

e Quick look at the output

ES6

 Many of these examples will include ES6

* Using a mixture of transpiling and polytills Babel
converts this to ES5 for broad compatibility in
browsers

 We'll look at just enough to make sense of the
examples

ES6 - Destructuring

« Uses to extract data from arrays or objects into
distinct variables

var o = { x: 10, y: 20 }
var{x,y} =0

var {x: a |
console.log(x) // 10
console.log(y) // 20
console.log(a) // 10

ESO - Class

e Classes in ES6G are just syntactic improvements over the
existing prototype based inheritance

class Animal { }

class Dog extends Animal {
constructor(name, age) {
this.name = name
this.age = age
}
J

var mybDog = new Dog(‘Tess’, 5)

ES6 - Modules

o Take elements of CommondS (Node) modules
and AMD (RequiredS) modules

export const myVariable = 5
export function dosomething() { ... }
export default class MyClass { ... }

Simple ToDo List Example

https://jsfiddle.net/jrandall/f7wn69ma/

https://jsfiddle.net/jrandall/f7wn69ma/

Components

* A React application is constructed of a hierarchy
of components

 Components often contain rendering code but

don’t have to (and we’ll see some examples
later)

Virtual DOM

 React uses the component model, properties
and state to build a virtual DOM

* The virtual DOM is much faster to manipulate
than the real DOM

 As components change (via properties or state)
React updates its virtual DOM and uses this to
calculate the most optimal way to update the
real DOM

JOX

JSX is not HTML

t's a shortcut for building the virtual DOM using
Reacts DOM API

't transpiles to JavaScript (usually via Babel)

It can provoke interesting reactions!!

Philosophical thoughts on
JSX

|t just flips traditional templating on its head

* Rather than learn a templating DSL with “code”
inside HTML JSX takes the other view - keep
things in JavaScript

e Over time I've found myself scratching my head
less over the JSX approach than | have over
Angular 1's template language

State and Properties

* Properties (props) are immutable and used to share state
between components

 Data and callbacks are passed down

o Components use the callbacks to communicate
change back up the component tree

e State is mutable and scoped within a component
e You should strive to make your components stateless and

either compute the “state” from properties in render() or
use the container pattern to pre-shape the properties

Component Litecycle

componentWillMount()
componentDidMount()

componentWillReceiveProps()

State shouldComponentUpdate()
Changes componentWillUpdate()
render()

componentWillUnmount()

lmmutability and JavaScript

JavaScript itself has no inbuilt support for immutable
data

* You can use the Immutable library to add support

* hitp://facebook.qgithub.io/immutable-js/

* Implements immutable versions of many common
data structures

 Works well with ES6 and Typescript, transpiles to
ES3

http://facebook.github.io/immutable-js/

Moving on from ToDo

* The ToDo example was simple but we're quickly
going to hit problems with those patterns:

» Data / state management was complex

* Everything was in one file

e |t's not clear how to test it

Redux

Redux

't bills itselt as a predictable state container for
JavaScript applications

t's a simplified implementation of the Flux
pattern

t's not tightly coupled to React and you can use
it with other frameworks (Angular 2 for example)

't does however work very well with React

How does it work”?

Read Existing State

Set New State

Rendered View

The 3 Redux Principles

e |t's a single source of truth for your whole
application

e State is read only

 Changes are made with pure functions called
reducers

Redux ToDo List Example

https://github.com/reactjs/redux/tree/master/examples/todos

Store

The store holds the state for the application
Allows state to be retrieved through getState()

Faclilitates changes to state through the dispatch
of actions

Allows for listeners to be registered

State |

e Should be thought of

N Bedux

as a serializable model

e Don’t form none-hierarchical links between
objects but use references (IDs etc.)

* |f you can take state -
and place it directly |
of thumb

rom a service or storage

N the store thats a good rule

Actions

e Simple payloads of data
e Should contain a type property

* Actions are created by action creators: functions
that return an action. Though with middleware

not always

Reducers

* Reducers are pure functions that take the existing
state and an action and return the new state:
(existingState,action) => newState

e State is immutable so the reducer must base the
new state on a copy of the existing state (more on
this later) - it cannot change the existing state

 Because deep copying Is expensive its common
to reuse objects that haven't changed in the new
state tree

Container Components

e Container components are used to connect Ul
components to the state tree

e Structure data and behaviour to presentation

components

e |_eave presentation components to concentrate

ourely on presentation and

nave No

dependencies on the rest o

" the application

Returning New State

 When dealing with complex models this can get
difficult

* Object.assign is a common option but that can
lead to quite complex code as you balance
copying with reusing existing objects

* There is an add-on package for React that helps
with this

update()

e Get it from npm:
npm Install react-addons-update —save

 Uses a Mongo like syntax for updating state

 Example: ToDo sample reworked to use update

Redux Middleware

 Middleware is run after an action is dispatched
and before it reaches a router

* Within middleware you have access to the
dispatch() and getState() methods of the store

e Can be used to observe to wrap around the
action and reduce process or get involved with it

lools, lesting and
Bullding

lools

(and a more complicated example)

 React Developer Tools

 Redux Developer Tools

lesting

 Using React and Redux leads to a clean
separation of concerns and a structure that
lends itself to testing

» Jest is the Facebook framework for testing React
applications

* Jest mocks dependencies by default. You can
set application wide exclusions and per test
exclusions.

Testing Redux

* Most of your testing will be focussed on reducers
* As they are pure functions they are simple to test

* Construct pre-state

* Execute reducer
* Run expectations against returned state

* Quick example!

Testing React Components

 When testing presentational components you're
normally interested in verifying that given state x
output y Is rendered and doesn't change

* You could verity this using the virtual DOM

 However Jest includes a “snapshot” teature to
save you a lot of typing

e Example!

Deploy to Azure with VSTS

 VSTS includes everything you need to build and
deploy React apps

e Example!

Thanks

* Contacting me:

 Email: James@accidentalfish.com

e Twitter: @azuretrenches

* GitHub: https://github.com/jamesRandall/

* Blog: http://www.azurefromthetrenches.com

* Slides and sample code will be online in the next few
days

mailto:james@accidentalfish.com
https://github.com/jamesRandall/
http://www.azurefromthetrenches.com

