
Kickstarting a charity 
with Serverless 
Technologies

James Randall



About me

https://github.com/JamesRandall

https://github.com/JamesRandall

https://www.azurefromthetrenches.com





The problem

• Connect schools, volunteers and Bookmark staff
• Three main areas to address:

• Discovery
• Schools finding volunteers
• Volunteers finding schools

• Scheduling
• People live busy lives
• Schools have constraints

• Safety
Children



Constraints

• A capped and small development budget
• A small operational budget
• A small development team – for the most part: me
• A small operational team – for the most part: me
• A none-technical internal and external audience
• Bookmark “back office”
• Schools
• Volunteers

• A deadline – we needed to be available inside of 5 months to beta in 
the upcoming school year



Beginnings

• We started with the front end – what were we building
• Fairly typical wireframing and storyboard process
• These were worked through with potential early adopters
• This teased out the main domains

• It also highlighted there was a lot of work to do!







Modular Monoliths

• I wanted, needed, to ”have my cake and eat it”
• Simple coding in a single codebase with low operational overhead and great 

support from tools
• Strict separation of concerns and clear demarcation between bounded 

contexts
• The capability to decompose later

• Subsystems broken down using Domain Driven Design
• The crossing of bounded contexts always takes place via a command





Step in Serverless

• Pay for what you use
• Scale to billable zero
• Event based programming model
• Highly managed with low operational overhead
• We used a 100% serverless compute platform



No Silver Bullet

• We combined it with a constant focus on high value implementation 
patterns



Serverless 
Compute

Azure Functions

Logic Apps

Data Factory



Storage

Azure Storage (blob and table)

Cosmos DB (graph and document / SQL)

Azure SQL Database



Other Services

Application Insights

Azure DevOps

Azure Key Vault

Auth0





Commands and Mediators

• A command is simple state associated with a C# type
• A command is dispatched for execution to a mediator
• The mediator invokes the configured executer:
• In process via a command handler
• Out of process via dispatch for remote execution (other Functions, Service 

Bus, APIs)

• Cross cutting concerns addressed consistently and once within the 
mediator



What does this look like?

• This was all supported with the Function Monkey library
https://functionmonkey.azurefromthetrenches.com

https://functionmonkey.azurefromthetrenches.com/


Sample Function Block



Sample Command



Sample Command Handler



• Our compute code is very lean
• 95% + addressed business concerns
• No boilerplate
• Consistent
• Its easy to move and repurpose

• Its easy to test – both acceptance and unit
• Its easy to change
• Operationally its been a breeze – nothing 

to do, everything is automated and was 
easy to automate
• We had Azure DevOps Pipelines set up from 

the very start
• Everything is a highly managed Azure service



• Operational costs are low – we have three 
always available environments running 
(dev, preview, live) and spend little
• Support has been straightforward
• We really benefited from the consistent 

addressing of cross cutting concerns

• Its easy to change – we went through two 
significant redesigns of scheduling in 
response to feedback and it was fairly 
straightforward
• The Service Bus acted as a low-UI 

operation manager



• Other than the function declarations our 
compute platform is completely 
decoupled from Functions themselves
• If required we can pick it up and drop it in 

a container
• No intention to do so!



• Until “run from package” was 
released deployments were 
unreliable
• Azure App Service locked file issues

• Requirement changes led to Cosmos 
capabilities going largely unused but 
we are paying its minimum 400RU 
footprint



Or rather: To do!

• Make use of API Management
• Prior to its serverless variant this was 

disproportionately expensive
• Would have cost more than the rest of the 

platform combined

• More data to integrate in the Warehouse 
from other external systems
• Move the React apps to Netlify

• Find a better meme!



Links

Function Monkey -
https://functionmonkey.azurefromthetrenches.com

Slides -
https://www.azurefromthetrenches.com/serverlesslondon/

Mediator -
https://commanding.azurefromthetrenches.com

Bookmark Reading -
https://www.bookmarkreading.org

Function Monkey dev.to Tutorial -
https://dev.to/jamesrandall/elegant-azure-functions-
development-in-c-with-function-monkey-1ea7


